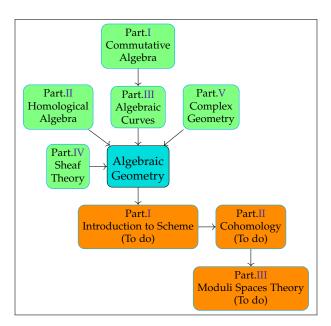
Algebraic Geometry Without Tears

Chänzz China E-mail: chanzz1@foxmail.com

version: v1.7.20240503



The Structure of AG

Contents

The Structure of AG	
Contents	ii
Vol. 1 Prerequisites 1	
I Commutative Algebra	2
II Homological Algebra	4
1 Some 1.1 1.2	6 6
III Algebraic Curves	7
IV Sheaf Theory	9
V Complex Geometry	11
Vol. 2 To Start AG 13	
I Scheme Theory	14
1 Beginning Concepts 1.1 The Definition of Algebraic Varieties 1.1.1 Affine Algebraic Sets 1.1.2 Zariski Topology	16 16 16 16
 2 Introduction to Scheme 2.1 The Definition of Algebraic Varieties	17 17 17 17 18 18
II Cohomology	20
III Moduli Spaces Theory	22

Volume 1 Prerequisites

Part I

Commutative Algebra

Part I: Table of Contents

Part II

Homological Algebra

Part II: Table of Contents

1	Some	6
	1.1 1.2	6

Chapter 1

Some

1.1 1.2

Definition

A class is called **small** if it has a cardinal number.

Theorem

A class is a set iff it is small.

Definition

A class that is not a set is called a **proper class**.

Example.

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are sets, the collection of all sets is a proper class, and the collection *R* of all Russell classes is not even a class.

Part III

Algebraic Curves

Part III: Table of Contents

Part IV

Sheaf Theory

Part IV: Table of Contents

Part V

Complex Geometry

Part V: Table of Contents

Volume 2 To Start AG

Part I

Scheme Theory

Part I: Table of Contents

1	Beginning Concepts	16
	1.1 The Definition of Algebraic Varieties	16
	1.1.1 Affine Algebraic Sets	16
	1.1.2 Zariski Topology	16
2	Introduction to Scheme	17
	2.1 The Definition of Algebraic Varieties	
	2.1.1 Affine Algebraic Sets	17
	2.1.2 Complex Numbers	17
	2.2 Locally Ringed Spaces	
	2.3 Moduli spaces	18

Chapter 1

Beginning Concepts

1.1 The Definition of Algebraic Varieties

1.1.1 Affine Algebraic Sets

1.1.2 Zariski Topology

Algebraic geometry builds fundamental concepts of geometry out of pure algebra (rings and polynomials). A very basic concept of geometry is topology.

This is definition of topological space.

Chapter 2

Introduction to Scheme

2.1 The Definition of Algebraic Varieties

2.1.1 Affine Algebraic Sets

Systems of polynomial equations in variables $x_1, ..., x_n$ can always be written in the form

$$p_1(x_1, ..., x_n) = 0$$

...
 $p_m(x_1, ..., x_n) = 0$

where $p_1, ..., p_m$ are polynomials.

Solutions of the above equations are *n*-tuples of elements $(x_1, ..., x_n)$ of the given field which satisfy the equations. Such *n*-tuples are also called zeros of the polynomials $p_1, ..., p_n$.

Sets of zeros of sets of polynomials are called affine algebraic sets.

Solutions of the above equations, or zeros of the polynomials $p_1, ..., p_m$, are also zeros of all linear combinations $a_1p_1 + ... + a_mp_m$ where $a_1, ..., a_m$ are arbitrary polynomials.

The elements form the ideal generated by $p_1, ..., p_m$, which is denoted by $(p_1, ..., p_m)$. An ideal in a commutative ring is a subset which contains 0, is closed under +, and multiples by elements of the ring.

The ring of polynomials is *n* variables over a field is Noetherian, which means that every ideal is finitely generated (i.e. generated by finitely many elements).

Note: A commutative ring *R* is Noetherian iff it satisfy the ascending chain condition (ACC) with respect to ideals.

2.1.2 Complex Numbers

Every non-constant polynomial in one variables with coefficients in \mathbb{C} has at least one zero (we also say root). A field which satisfied this property is called algebraically closed.

The fact that C is algebraically closed is known as the fundamental theorem of algebra.

Definition

Let *A* be a field. Then an affine *n*-space $A^n = \{x = (x_1, x_2, ..., x_2) \mid x_i \in A, \forall i = 1, 2, ..., n\}$ is a vector space of dimension *n* over the field *A*.

Example.

The Euclidean *n*-space \mathbb{R}^n is an affine *n*-space of dimension *n*.

Definition

Given an affine space A^n , an *n*-tuple $x = (x_1, x_2, ..., x_n) \in A^n$ is said to be a zero of a polynomial $f(x) = f(x_1, x_2, ..., x_n) \in A[x_1, x_2, ..., x_n]$ (polynomial ring of *n* determinates over *A*), if $f(x) = f(x_1, x_2, ..., x_n) = 0$. Given a subset $S \subseteq A[x_1, x_2, ..., x_n]$, the algebraic set V(S) of zeros of *S* is defined by $V(S) = \{x \in A^n \mid f(x) = 0, \forall f \in S\} \subseteq A^n$.

A subset $X \subseteq A^n$ is said to be an affine algebraic set or simply, an **algebraic set** if there is a subset $S \subseteq A[x_1, x_2, ..., x_n]$ such that X = V(S).

Definition

Let *X* be a subset of A^n and the subset I(X) of $A[x_1, x_2, ..., x_n]$ be defined by $I(X) = \{f \in A[x_1, x_2, ..., x_n] \mid f(x) = 0 \text{ for all } x \in A\}$, is an ideal of $A[x_1, x_2, ..., x_n]$, called the ideal of *X*.

Definition

An algebraic set *X* in A^n is said to be an **affine variety** if I(X) is a prime ideal in the polynomial ring $A[x_1, x_2, ..., x_n]$.

2.2 Locally Ringed Spaces

Definition (Scheme)

A scheme is a locally ringed space (X, \mathcal{O}_X) which admits an open covering $X = \bigcup_{i \in I} U_i$ s.t. all locally ringed spaces

 $(U_i, \mathcal{O}_X|_{U_i})$ are affine schemes.

Definition (Scheme of second definition)

A **scheme** is a locally ringed space with the property that every point has an open neighborhood which is an affine scheme.

A morphism of schemes is a morphism of locally ringed spaces. The category of schemes will be denoted Sch.

Definition (Affine Scheme)

Locally ringed spaces isomorphic to $(\text{Spec}(A), \mathcal{O}_{\text{Spec}(A)})$ will be called affine schemes.

Definition (Affine Scheme of second definition)

An **affine scheme** is a locally ringed space isomorphic as a locally ringed space to Spec(R) for some ring *R*.

A morphism of affine schemes is a morphism in the category of locally ringed spaces.

Definition (The spectrum of a ring)

Let *R* be a ring. The spectrum of *R* is the set of prime ideals of *R*. It is usually denoted Spec(R).

Definition (Ringed Space)

A ringed space is a topological space *X* with a sheaf of rings \mathcal{O}_X . The sheaf \mathcal{O}_X is called the structure sheaf of the ringed space (*X*, \mathcal{O}_X).

A ringed space (X, \mathcal{O}_X) is called a local ringed space if \mathcal{O}_X is a sheaf of local rings.

Definition (Ringed Space)

A ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of unital rings.

If all stalks of the structure sheaf are local rings, it is called a locally ringed space.

Definition (Locally Ringed Space)

A locally ringed space (X, \mathcal{O}_X) is a pair consisting of a topological space X and a sheaf of rings \mathcal{O}_X all of whose stalks are local rings.

A locally ringed space is a ringed space (X, \mathcal{O}_X) s.t. the stalks of the structure sheaf \mathcal{O}_X are local rings.

2.3 Moduli spaces

This section discusses morphisms $f: \mathcal{X} \to Y$ from algebraic stacks to algebraic spaces. Under suitable hypotheses Y is called a *moduli space* for \mathcal{X} . If $\mathcal{X} = [U/R]$ is a presentation, then we obtain an R-invariant morphism $U \to Y$ and (under suitable hypotheses) Y is a *quotient* of the groupoid (U, R, s, t, c). A discussion of the different types of quotients can be found starting with Quotients of Groupoids.

Definition

Let \mathcal{X} be an algebraic stack. Let $f: \mathcal{X} \to Y$ be a morphism to an algebraic space Y.

- 1. We say *f* is a *categorical moduli space* if any morphism $\mathcal{X} \to W$ to an algebraic space *W* factors uniquely through *f*.
- 2. We say *f* is a *uniform categorical moduli space* if for any flat morphism $Y' \to Y$ of algebraic spaces the base change $f': Y' \times_Y X \to Y'$ is a categorical moduli space.
- Let C be a full subcategory of the category of algebraic spaces.
 - 3. We say *f* is a *categorical moduli space in* C if $Y \in Obj(C)$ and any morphism $\mathcal{X} \to W$ with $W \in Obj(C)$ factors uniquely through *f*.
 - 4. We say is a *uniform categorical moduli space in* C if $Y \in Obj(C)$ and for every flat morphism $Y' \to Y$ in C the base change $f': Y' \times_Y X \to Y'$ is a categorical moduli space in C.

By the Yoneda lemma a categorical moduli space, if it exists, is unique. Let us match this with the language introduced for quotients.

Lemma

Let (U, R, s, t, c) be a groupoid in algebraic spaces with $s, t: R \to U$ flat and locally of finite presentation. Consider the algebraic stack $\mathcal{X} = [U/R]$. Given an algebraic space Y there is a 1-to-1 correspondence between morphisms $f: \mathcal{X} \to Y$ and R-invariant morphisms $\phi: U \to Y$.

Lemma

With assumption and notation as in Lemma. Then f *is a (uniform) categorical moduli space iff* ϕ *is a (uniform) categorical quotient. Similarly for moduli spaces in a full subcategory.*

Lemma

Let $f: \mathcal{X} \to Y$ be a morphism from an algebraic stack to an algebraic space. If for every affine scheme Y' and flat morphism $Y' \to Y$ the base change $f': Y' \times_Y \mathcal{X} \to Y'$ is a categorical moduli space, then f is a uniform categorical moduli space.

Part II Cohomology

Part II: Table of Contents

Part III

Moduli Spaces Theory

Part III: Table of Contents